如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装
1个回答

解题思路:要将绳子拉断,绳子的拉力必须达到最大值30N,此时恰好由绳子的拉力和重力的合力提供向心力,根据牛顿第二定律列式求出小球的速度,再由动量定理求解冲量.

要使绳子拉断,绳子的拉力必须达到最大值F=14N,

此时恰好由绳子的拉力和重力的合力提供向心力,根据牛顿第二定律则有:

F-mg=m

v2

l,

代入数据解得:v=2m/s,

由动量定理得:I=△p=mv=1×2=2N•s

作用在小球上的水平冲量至少应为2N•s.

故答案为:2.

点评:

本题考点: 动量定理;牛顿第二定律;向心力.

考点点评: 对于圆周运动动力学问题,分析受力情况,确定向心力的来源是解题的关键.