令:S=2/(1×2)+2/(2×3)+2/(3×4)+.+2/[n(n+1)]
因此:
S/2=1/(1×2)+1/(2×3)+1/(3×4)+.+1/[n(n+1)]
注意到:
1/(1×2) = (2-1)/(1×2)=1-1/2
1/(2×3) =(3-2)/(2×3)=1/2-1/3
.
1/[n(n+1)]=[(n+1)-n]/[n(n+1)]=1/n - 1/(n+1)
因此:
S/2=1/(1×2)+1/(2×3)+1/(3×4)+.+1/[n(n+1)]
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+.+1/n-1/(n+1)
=1+(-1/2+1/2)+(-1/3+1/3)+(-1/4+1/4)+(-1/5+1/5)+(-1/6+.+[-1/n+1/n]-1/(n+1)
=1-1/(n+1)
=n/(n+1)
S=2n/(n+1)