初二的代数难题已知:p+q+r=9,且p/x方-yz=q/y方-zx=r/z方-xy 求PX+QY+RZ/X+Y+Z(1
2个回答

(1)设p/(x^2-yz)=q/(y^2-zx)=r/(z^2-xy)=k,

所以p=k(x^2-yz),q=k(y^2-zx),r=k(z^2-xy),

因为p+q+r=9,所以k(x^2+y^2+z^2-xy-yz-zx)=9,

而(px+qy+rz)/(x+y+z)

=[kx(x^2-yz)+ky(y^2-zx)+kz(z^2-xy)]/(x+y+z)

=k(x^3+y^3+z^3-3xyz)/(x+y+z),

注意到(x^3+y^3+z^3-3xyz)/(x+y+z)=x^2+y^2+z^2-xy-yz-zx,

所以(px+qy+rz)/(x+y+z)=k(x^2+y^2+z^2-xy-yz-zx)=9,

所以(px+qy+rz)/(x+y+z)=9;

(2)因为x+4y=1,

所以x=1-4y,

代入第一个式子,得2(1-4y)+my=4,

所以(m-8)y=2,

因为2=1*2=(-1)*(-2),

所以m-8=1,y=2,

或m-8=2,y=1,

或m-8=-1,y=-2,

或m-8=-2,y=-1,

所以m=9或m=10或m=7或m=6,

所以当m取6,7,9,10时,x和y都是整数;

(3)因为1/(1+y+yz+yzt)

=1/(xyzt+y+yz+yzt)

=1/[y(1+z+zt+ztx)]

=1/[y(xyzt+z+zt+ztx)]

=1/[yz(1+t+tx+txy)]

=1/[yz(xyzt+t+tx+txy)]

=1/[yzt(1+x+xy+xyz)],

同理,1/(1+z+zt+ztx)=1/[zt(1+x+xy+xyz)],

1/(1+t+tx+txy)=1/[t(1+x+xy+xyz),

所以1/(1+x+xy+xyz)+1/(1+y+yz+yzt)+1/(1+z+zt+ztx)+1/(1+t+tx+txy)

=yzt/[yzt(1+x+xy+xyz)]+1/[yzt(1+x+xy+xyz)]+y/[yzt(1+x+xy+xyz)+

yz/[yzt(1+x+xy+xyz)]

=(1+y+yz+yzt)/[yzt(1+x+xy+xyz)]

=(1+y+yz+yzt)/(yzt+xyzt+xyzt*y+xyzt*yz)

=(1+y+yz+yzt)/(yzt+1+y+yz)

=(1+y+yz+yzt)/(1+y+yz+yzt)

=1.

所以1/(1+x+xy+xyz)+1/(1+y+yz+yzt)+1/(1+z+zt+ztx)+1/(1+t+tx+txy)=1.