∵Rt△ABC中,∠A=60°
∴AC=a,BC=a√3
∵PA⊥α,AB、AC、BC∈面α
∴PA⊥AB,PA⊥AC,PA⊥BC
Rt△PAC中,PA=AC=a,PC=a√2,同理PO=a√2
设OC中点为D,在等腰△ACO中,PD=√[PO²-(CO/2)²]=√[2a²-a²/4]=a(√7)/2
∵PA⊥BC,AC⊥BC, PA、AC∈面PAC
∴PC⊥BC.
S△ACO=CO*PD/2=a*a(√7)/2/2=a²(√7)/4
S△POB=OB*PA/2=a²/2
S△PCB=PC*CB/2=a√2*a√3/2=a²(√6)/2
侧面积=[(√7)/4+(√6)/2+1/2]a²
V P-OBC=S△PAC*BC/3=(a²/2)*(a√3)/3
=a(√3/6)