1、在三角形ABC中,角ABC的各边分别为abc 已知 b cosC=(2a-c)cosB
4个回答

等我明天

(1) 已知 b cosC=(2a-c)cosB

b cosC+c cosB=2acosB

sinB * cosC+sinc* cosB=2sinA*cosB(正弦定理)

sin(B+C)=sinA=2sinA*cosB

cosB=1/2

B=60

[a²+c²-b²]/2ac=cosB=1/2 b²=ac

a²+c²=2ac

(a-c)²=0

a=c

B=60

ΔABC是等边三角形

(2)已知a1+2a2=0 s4-s2=1/8

a1+2a1q=0 a1(1+2q)=0 q=-1/2

[a1(1-q^3)/(1-q)]-]a1(1-q^2)/(1-q)]=1/8 a1.q^2=1/8 a1=1/2

an=-1/2(1/2)^(n-1)=-1/2^n

Sn=a1(1-q^n)/(1-q)]=1/2^n-1

(3)已知sin2C=sinAcosB+cosAsinB

2sinCcosC =sinAcosB+cosAsinB=sin(A+B) = sinC cosC=1/2 C=60

cosC的平方-1/sin(A+B)cos(A+B)=cos60²-1/sin120/cos120

=1/2^2-1/√3/2/(-1/2)

=1/4+4√3/3

sin75=sin(45+30)=[√6+√2]/4 c/sinC=a/sinA a=[3+√3]/2

SΔABC=1/2acsinB=3[3+√3]/8

(4)an=19+(n-1)*(-2)=-2n+21

Sn=na1+1/2n(n-1)d=-n^2+20n

已知bn-an=3^(n-1)

bn=an+3^(n-1 )=3^(n-1 )-n^2+20n

Tn=[3^(n-1 )-1]/2-1/6n(n+1)(2n+1)+10(1+n)n=ok

(5) S6=6(a1+a6)/2=3(a1+a6)=60 a1+a6=20 2a1+5d=20

已知 a6^2=a1*a21 a1=2.5d 带入上式得

d=2 a1=5

故an=2n+3 Sn=(2n+3+5)*n/2=n^2+4n

已知b(n+1) - bn=an=2n+3

bn-b(n-1)=2(n-1)+3

b(n-1)-b(n-2)=2(n-3)+3

:

b2-b1=2+3

等式两边相加得:

bn-b1=2*(1+n-1)(n-1)/2+3(n-1)=n^2+2n-3

bn=n^2+2n

1/bn=1/(n^2+2n) =1/2[1/n-1/(n+2)]

T n=1/2[1-1/3+1/2-1/4+1/3-1/5+……-1/n+1/(n+1)-1/(n+2)]=1/2[1+1/2-1/n-1/(n+2)]=ok

6 已知 2a sinA =(2b+c)sinB+(b+2c)sinC

2a^2=2b^2+2c^2+2bc

a^2-b^2-c^2=bc cosA=-1/2 ∠A=120 sinB=sinC=sin30=1/2 三角形ABC的形状等腰三角形

7. a n+1=2 s n =2(an-an-1)

an=2a(n-1)+1

an+1=2[(a(n-1)+1]

[an+1]/[(a(n-1)+1]=2等比公比2首项2

an+1=2*2^(n-1)=2^n

an=2^n-1

sn=(2^(n+1)-1)-n

ok