∫(1/√(1-(sinx)^4))dx怎么算啊
2个回答

∫(1/√(1-(sinx)^4)dx

=∫1/√{[(1-(sinx)^2][(1+(sinx)^2]}dx

=∫1/√{cosx^2[(1+(sinx)^2]}dx

=∫(sin^2x+cos^2x)/{|cosx|√[(1+(sinx)^2]}dx

=∫sin^2x/{|cosx|√[(1+(sinx)^2]}dx+∫cos^2x/{|cosx|√[(1+(sinx)^2]}dx (cosx>0时)

=∫sin^2x/{cosx√[(1+(sinx)^2]}dx+∫cos^2x/{cosx√[(1+(sinx)^2]}dx

=∫sinxtanx/√[(1+(sinx)^2]dx+∫cosx/√[(1+(sinx)^2]dx

=∫cosxtan^2x/√[(1+(sinx)^2]dx+∫cosx/√[(1+(sinx)^2]dx

=∫cosx(sec^2x-1)/√[(1+(sinx)^2]dx+∫cosx/√[(1+(sinx)^2]dx

=∫cosxsec^2x/√[(1+(sinx)^2]dx

=∫sec^2x/√[(1+(sinx)^2]dsinx

令sinx=t,x=arctant,dx=1/(1+t^2)dt,cos^2x=1-t^2,sec^2x=1/cos^2x=1/(1-t^2)

∫sec^2x/√[(1+(sinx)^2]dsinx

=∫1/{(1-t^2)√(1+t^2)}dt

=∫(1-t^2+t^2)/{(1-t^2)√(1+t^2)}dt

=∫1/√(1+t^2)dt+∫t^2/{(1-t^2)√(1+t^2)}dt

=ln[√(1+t^2)+t]+∫t^2/{(1-t^2)√(1+t^2)}dt

∫t^2/{(1-t^2)√(1+t^2)}dt

= 1/2∫t/{(2-1-t^2)√(1+t^2)}dt^2

=∫t/(2-1-t^2)d√(1+t^2)

=∫t/{2-[√(1+t^2)]^2}d√(1+t^2)

=1/2√2∫tdln{[√2-√(1+t^2)]/[√2+√(1+t^2)]}

=√2/4*ln{[√2-√(1+t^2)]/[√2+√(1+t^2)]}t+∫ln{[√2-√(1+t^2)]/[√2+√(1+t^2)]}dt

∫ln{[√2-√(1+t^2)]/[√2+√(1+t^2)]}dt

=∫ln[√2-√(1+t^2)]dt-∫ln[√2+√(1+t^2)]}dt

[图片]