如果t == 0.5,
Sn == 0.5+an,
那么就有
a1 == 0.5+a1
显然是不合理的!所以
t != 0.5,
2t*a1 == t+a1 --> a1 == t/(2t-1),
2t(a1+a2) == t+a2 --> 2t*a2 == a2-a1,
2t(a1+a2+a3) == t+a3 --> 2t*a3 == a3-a2,
......
2t(a1+a2+...+an) == t+an --> 2t*an == an-a(n-1),
很明显an 是一个等比数列:
an == a(n-1)/(1-2t)
而且 a1 == t/(2t-1),
根据等比数列求和公式可以得到结果~!
Sn == a1(1-q^n)/(1-q)
== t/(2t-1)[1-1/(1-2t)^n] /[1-1/(1-2t)]
== 1/2-1/[2(1-2t)^n].