已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,
2个回答

∵An/Bn=(7n+45)/(n+3)

An/Bn=[(a1+an)n/2]/[(b1+bn)n/2]

=(a1+an)/(b1+bn)

(a1+an)/(b1+bn)=(7n+45)/(n+3)

(下面需将an/bn------> [a1+ax]/[b1+bx]形式)

∴an/bn=(2an)/(2bn)

=[a1+a(2n-1)]/[b1+b(2n-1)]

=[7(2n-1)+45]/[(2n-1)+3]

=(14n+38)/(2n+2)

=(7n+19)/(n+1)

=[7(n+7)+12]/(n+1)

=7+12/(n+1)

∵an/b2n为整数

∴n+1=2,3,4,6,12

∴n=1,2,3,5,11共5个

没看清楚,是an/b2n

∵An/Bn=(7n+45)/(n+3)

∴An=kn(7n+45),Bn=kn(n+3)

k为常数

an=An-A(n-1)

=7kn^2+45kn-7k(n-1)^2 -45k(n-1)

=14kn+38k

bn=Bn-B(n-1)

=kn^2+3kn-k(n-1)^2-3k(n-1)

=2kn+2k

an/b2n=(14kn+38k)/(4kn+2k)

=(7n+19)/(2n+1)

=[7(2n+1)+31]/[2(2n+1)]

=7/2+31/(4n+2)

∴31/(4n+2)的小数部分为0.5,

分母应为62,4n+2=62,n=15

一个

(4n+2=6,10,14,18,20,24,.,58均不合题意)