为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E
1个回答

解题思路:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.

(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.

(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.

(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)

由题意,得

a+b=280

a=2b-20(2分)

解得

a=180

b=100(3分)

答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)

(2)由题意,得

120-x<2x

x-20≤25(5分)

解得

x>40

x≤45即40<x≤45.

∵x为整数,∴x的取值为41,42,43,44,45.(6分)

则这批赈灾物资的运送方案有五种.

具体的运送方案是:

方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.

方案二:A地的赈灾物资运往D县42吨,运往E县58吨;B地的赈灾物资运往D县78吨,运往E县22吨.

方案三:A地的赈灾物资运往D县43吨,运往E县57吨;B地的赈灾物资运往D县77吨,运往E县23吨.

方案四:A地的赈灾物资运往D县44吨,运往E县56吨;B地的赈灾物资运往D县76吨,运往E县24吨.

方案五:A地的赈灾物资运往D县45吨,运往E县55吨;B地的赈灾物资运往D县75吨,运往E县25吨.(7分)

(3)设运送这批赈灾物资的总费用为w元.

由题意,得w=220x+250(100-x)+200(120-x)+220(x-20)+200×60+210×20=-10x+60800. (9分)

因为w随x的增大而减小,且40<x≤45,x为整数.

所以,当x=41时,w有最大值.则该公司承担运送这批赈灾物资的总费用最多为:w=60390(元).(10分)

点评:

本题考点: 一元一次不等式组的应用;一次函数的应用.

考点点评: 解应用题的一般步骤是:审、设、列、解、验、答.正确找出题中的等量或不等关系是解题的关键.本题利用一次函数的增减性确定了总费用的最大值.