解题思路:(1)根据已知的直线解析式,可得到点A的坐标,进而可利用矩形的面积求出OC、AB的长,即可得到B、C的坐标,由于AB∥x轴,且同时在抛物线的图象上,根据这两点的坐标,即可确定抛物线的对称轴方程;
(2)由于⊙P同时经过点A、B,根据抛物线和圆的对称性知,圆心P必在抛物线的对称轴上,由此可确定点P的横坐标;由于⊙P与y轴两交点的距离正好等于AB的长,根据圆心角、弦的关系,即可得到P到y轴的距离应该等于P到AB的距离,由此可确定点P的纵坐标,即可得到点P的坐标;
(3)假设两个三角形相似,显然∠DAO>∠DAE,因此只有一种情况:∠DAE=∠DOA,可过D作DM⊥y轴,作DN⊥x轴,即可得到∠DAM=∠DON,易证得△DAM∽△DON,设出点D的纵坐标,然后表示出AM、DN的长,进而根据相似三角形得到的比例线段求出点D的纵坐标,也就得到了点D的坐标,而后可利用待定系数法求出该抛物线的解析式.
(1)∵直线y=ax+3与y轴交于点A,
∴点A坐标为(0,3),
∴AO=3,
∵矩形ABCO的面积为12,
∴AB=4,
∴点B的坐标为(4,3),
∴抛物线的对称轴为直线x=2;
(2)∵⊙P经过A、B两点,
∴点P在直线x=2上,即点P的坐标为(2,y),
∵⊙P与y轴相交,且在y轴上两交点的距离为4,
又∵AB=4,
∴点P到AB的距离等于点P到y轴的距离为2,
∴四边形PEAF是正方形,
∴PE=2,
∵OA=3,
∴OF=1,
同理:AM=2,
∴OM=5,
∴点P的坐标为(2,1)或(2,5);
(3)①当△DAE∽△DAO,则∠DAE=∠DAO,与已知条件矛盾,此情况不成立.
过点D作DM⊥y轴,垂足为点M,DN⊥x轴,垂足为点N,
设点D坐标为(2,y),
则ON=DM=2,DN=OM=y,AM=y-3;
②当△DAE∽△DOA,则∠DAE=∠DOA,
∴∠DAM=∠DON,
∵∠DMA=∠DNO=90°,
∴△DAM∽△DON,
∴[ON/AM=
DN
DM],
∴[2/y−3=
y
2],
∴y2-3y-4=0,
解得:y1=-1(舍),y2=4,
∴点D坐标为(2,4).
由顶点坐标为(2,4),设抛物线的解析式为y=a(x-2)2+4,
将(0,3)代入,得a=−
1
4,
∴抛物线解析式为y=−
1
4(x−2)2+4.
点评:
本题考点: 二次函数综合题.
考点点评: 此题考查了二次函数、圆的对称性,圆心角、弧、弦的关系,相似三角形的判定和性质,二次函数解析式的确定等重要知识,涉及知识点较多,难度较大.