A、B是线段EF上两点,已知EA:AB:BF=1:2:3,M、N分别为EA、BF的中点,且MN=8cm,求EF的长.
1个回答

解题思路:如图,由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.

∵EA:AB:BF=1:2:3,

可以设EA=x,AB=2x,BF=3x,

而M、N分别为EA、BF的中点,

∴MA=[1/2]EA,NB=[1/2]BF,

∴MN=MA+AB+BN=[1/2]x+2x+[3/2]x=4x,

∵MN=8cm,

∴4x=8,

∴x=2,

∴EF=EA+AB+BF=6x=12,

∴EF的长为12cm.

点评:

本题考点: 比较线段的长短.

考点点评: 利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.