方法1:
f(x)=(√(x^2+1))/x-1
=|x|/x * √(1+1/x^2) -1
因为:√(1+1/x^2) ∈ (1,+∞)
故:|x|/x * √(1+1/x^2) ∈ (1,+∞) ∪ (-1,-∞)
因此:f(x) ∈ (0,+∞) ∪ (-2,-∞)
方法2:
令 x=tg(x),x∈(-π/2,π/2)
有:f(x) = sec(x)/tg(x) -1
f(x) = 1/sin(x) -1
因为:1/sin(x) ∈ (1,+∞) ∪ (-1,-∞),x∈(-π/2,π/2)
因此:f(x) ∈ (0,+∞) ∪ (-2,-∞)