是这样的吧:
s²+(t-5)²=a²-------------(1)
t²+(S-b)²=a²-------------(2)
25+b²=a²----------------(3)
首先,由(3)得:b=±√(a²-25)
(1)-(2)得:25-10t-b²+2bs=0
将b=±√(a²-25)代入上式得:10(5-t)-a²+2[±√(a²-25)]s=0
所以得:t-5={-a²+2[±√(a²-25)]s}/10
代入(1)得:s²+{-a²+2[±√(a²-25)]s}²/100=a²
即:4a²s²-4[±√(a²-25)]a²s+(a²)²-100a²=0
解得:s=(b±5√3)/2=[±0.5√(a²-25)] ±2.5√3
于是:t=5+{-a²+2[±√(a²-25)]s}/10=(5±b√3)/2=2.5±0.5√(3a²-75)