求解一道四元两次方程组s2+(t-5)2=a2t2+(S-b)2=a225+b2=a2求:需用含a的代数式表示出其他三个
1个回答

是这样的吧:

s²+(t-5)²=a²-------------(1)

t²+(S-b)²=a²-------------(2)

25+b²=a²----------------(3)

首先,由(3)得:b=±√(a²-25)

(1)-(2)得:25-10t-b²+2bs=0

将b=±√(a²-25)代入上式得:10(5-t)-a²+2[±√(a²-25)]s=0

所以得:t-5={-a²+2[±√(a²-25)]s}/10

代入(1)得:s²+{-a²+2[±√(a²-25)]s}²/100=a²

即:4a²s²-4[±√(a²-25)]a²s+(a²)²-100a²=0

解得:s=(b±5√3)/2=[±0.5√(a²-25)] ±2.5√3

于是:t=5+{-a²+2[±√(a²-25)]s}/10=(5±b√3)/2=2.5±0.5√(3a²-75)