小于150且有15个约数的自然数是多少?
2个回答

将N表示成N=p1^a1*p2^a2*…*pn^an.其中pi(i=1,2,…,n)是互不相等的质数,ai(i=1,2,…,n)是自然数.

约数的个数就是s=(1+a1)*(1+a2)*…*(1+an).

15=3*5

也就是说所求的数X=a^2*b^4或者x=a^14 但2^14>200故x=a^2*b^4

5^4=625>200故b=2或者3

x=2^2*3^4=324>200 故b=3无解

x=3^2*2^4=144

x=5^2*2^4=400>200

故 有15个因数且小于150的数只有1个 144=2*2*2*2*3*3

另一种解法;考虑有15个因数 这个数必是完全平方数 否则不会有奇数个因数

150以内的完全平方数一共14个 依次检验

所有因数为:1,2,3,4,6,8,9,12,16,18,24,36,48,72,144