【解】(1)如图3,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形.∴PM=DC=12
∵QB==6-t,∴S=(1/2)×12×(16-t)=96-t
(2)由图可知:CM=PD=2t,CQ=t.以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:
①若PQ=BQ.在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得t=7/2;
②若BP=BQ.在Rt△PMB中,BP2=(16-t)2+122.由BP2=BQ2得:
(16-2t)2+122=(16-t)2即3t2-32t+144=0.
由于Δ=-704