已知二次函数y=x2﹣(m2﹣2)x﹣2m的图象与x轴交于点A(x1,0)和点B(x2,0)
1个回答

(1)∵二次函数y=x2﹣(m2﹣2)x﹣2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1<x2,

令y=0,即x2﹣(m2﹣2)x﹣2m=0 ①,则有:

x1+x2=m2﹣2,x1x2=﹣2m.

∴===,

化简得到:m2+m﹣2=0,解得m1=﹣2,m2=1.

当m=﹣2时,方程①为:x2﹣2x+4=0,其判别式△=b2﹣4ac=﹣12<0,此时抛物线与x轴没有交点,不符合题意,舍去;

当m=1时,方程①为:x2+x﹣2=0,其判别式△=b2﹣4ac=9>0,此时抛物线与x轴有两个不同的交点,符合题意.

∴m=1,

∴抛物线的解析式为y=x2+x﹣2.