函数y=sin2x+2√2cos(π/4+x)+3的最小值是 答案是2-2√2,(急~)
1个回答

y=sin2x+2√2cos(π/4+x)+3

=cos(π/2-2x)+2√2cos(π/4+x)+3

=cos(2x-π/2)+2√2cos(π/4+x)+3

=-cos(2x-π/2+π)+2√2cos(π/4+x)+3

=-cos(2(x+π/4))+2√2cos(x+π/4)+3

令t=(x+π/4)

y=-cos2t+2√2cost+3

=-(2cos^2t-1)+2√2cost+3

=-2(cost-√2/2)^2+6

开口向下,对称轴cost=√2/2

最小值必然是最远离对称轴的点即

cost=-1

最小值=-(2*1-1)+2√2(-1)+3

=2-2√2

此时cos(x+π/4)=-1

x=3π/4+2kπ(k是整数)