设f(x)=x 2 ,g(x)=8x,数列{a n }(n∈N*)满足a 1 =2,(a n+1 -a n )•g(a
1个回答

(Ⅰ)由已知,得(a n+1-a n)•8(a n-1)+(a n-1) 2=0.

即(a n-1)(8a n+1-7a n-1)=0.

∵a 1=2≠1,∴a 2≠1,同理a 3≠1,…,a n≠1.

∴8a n+1=7a n+1.

即8(a n+1-1)=7(a n-1),

∴数列{a n-1}是以a 1-1=1为首项,

7

8 为公比的等比数列.

(Ⅱ)由(1),得 a n -1=(

7

8 ) n-1 .

∴ b n =(n+1)•(

7

8 ) n .

则 b n+1 =(n+2)•(

7

8 ) n+1 .

b n+1

b n =

n+2

n+1 •

7

8 ,设

b n+1

b n ≥1,则n≤6.

因此,当n<6时,b n<b n+1;当n=6时,b 6=b 7,当n>6时,b n>b n+1

∴当n=6或7时,b n取得最大值.

(Ⅲ) S n =2•

7

8 +3•(

7

8 ) 2 +4•(

7

8 ) 3 +…+n•(

7

8 ) n-1 +(n+1)•(

7

8 ) n

7

8 • S n =2•(

7

8 ) 2 +3•(

7

8 ) 3 +4•(

7

8 ) 4 +…+n•(

7

8 ) n +(n+1)•(

7

8 ) n+1

相减得:

1

8 • S n =2•

7

8 +(

7

8 ) 2 +(

7

8 ) 3 +…+(

7

8 ) n -(n+1)•(

7

8 ) n+1 =

7

8 +

7

8 ×8×[1-(

7

8 ) n ]-(n+1)•(

7

8 ) n+1

=

63

8 -(n+9)•(

7

8 ) n+1

∴ S n =63-8(n+9)•(

7

8 ) n+1 .