高数求通解y’=(y^2-x)/2y(x-1)
2个回答

由原方程进行变换:

2y*y'=(y^-x)/(x-1)

2y*dy/dx=(y^-x)/(x-1)

d(y^)/dx=(y^-x)/(x-1)

令t=y^,于是原方程转化为关于t和x的微分方程:

dt/dx=(t-x)/(x-1)

dt/dx +[-1/(x-1)]*t=-x/(x-1)

此为一阶线性非齐次方程

其中,p(x)=-1/(x-1),q(x)=-x/(x-1)

套用公式:

∫p(x)dx=∫-dx/(x-1)=-ln(x-1)

于是,e^[-∫p(x)dx]=e^[ln(x-1)]=x-1

e^[∫p(x)dx]=e^[-(x-1)]=1/(x-1)

∫q(x)*e^[∫p(x)dx]

=∫[-x/(x-1)]*[1/(x-1)]dx=∫[-x/(x-1)^]dx

=-∫[(x-1)+1]dx/(x-1)^

=-∫dx/(x-1) - ∫dx/(x-1)^

=-ln(x-1) + 1/(x-1)

=1/(x-1) - ln(x-1)

于是,可求出

t=(x-1)*[1/(x-1) - ln(x-1) +C]

=1+C(x-1)-(x-1)ln(x-1)

于是:

y^=1+c(x-1)-(x-1)ln(x-1)