[log(4)3+log(8)3][log(3)2+log(9)2]-log(1/2)32∧1/4过程详细点,
1个回答

log(4)3+log(8)3

用换底公式,再加loga (x^n)=nlog a x

=ln3/ln4+ln3/ln8

=ln3/ln(2^2)+ln3/ln(2^3)

=ln3/(2ln2)+ln3/(3ln2)

=(ln3/ln2)(1/2+1/3)

=(5/6)(ln3/ln2)

同理

log(3)2+log(9)2

=ln2/ln3+ln2/ln9

=ln2/ln3+ln2/(ln3^2)

=ln2/ln3+ln2/(2ln3)

=(ln2/ln3)(1+1/2)

=(ln2/ln3)*3/2

[log(4)3+log(8)3][log(3)2+log(9)2]

=(5/6)(ln3/ln2)*(ln2/ln3)*3/2

=5/4

log(1/2)32∧1/4

=(1/4)log(1/2)32

=(1/4)log(1/2)(2^5)

=(5/4)log(1/2) 2

=(5/4)log(1/2) (1/2)^(-1)

=-5/4

所以

[log(4)3+log(8)3][log(3)2+log(9)2]-log(1/2)32∧1/4

=5/4-(-5/4)

=5/4+5/4

=(5/4)*2

=5/2