(1).向量a•向量b=cos(3x/2) cos(x/2)-sin(3x/2)sin(x/2)=cos2x
|向量a+b|= [cos(3x/2)+ cos(x/2)]^2+[sin(3x/2)-sin(x/2)]^2
= 2+2cos(3x/2) cos(x/2)-2sin(3x/2)sin(x/2)
= 2+2cos2x
(2).F(x)=cos2x-2Y(2+2cos2x) =(1-4Y)cos2x-4Y
当cos2x=1时,函数f(x)取最小值-3/2,即(1-4Y)-4Y=-3/2,解得Y=5/16