1/(5+10)+1/(5+10+15)+1/(5+10+15+20)简算怎么做?
2个回答

有一道题类似:

(5+10分之1)+(5+10+15分之1)+(5+10+15+20分之1)+……+(5+10+15+20+……+100分之1)=[ ]

每一项的分母为:5(1+2+...+n)=5n(n+1)/2,n=2~20

原式=(2/5)∑1/n(n+1)=(2/5)∑[1/n-1/(n+1)]

求和号∑内的各项前后抵消,得到:

(2/5)[1/2-1/(20+1)]

=19/105

而你这道题:

1/(5+10)+1/(5+10+15)+1/(5+10+15+20)

=(1/5)(1/3)+(1/5)(1/6)+(1/5)(1/10)

=1/5(1/3+1/6+1/10)

=1/5(1/2+1/10)

=(1/5)(3/5)

=3/25