解题思路:由在等腰梯形ABCD中,AB∥CD,AD=BC,∠B=60°,即可求得∠DAC=∠CAB=30°,又由AB∥CD,可证得∠DCA=∠CAB,则可得∠DAC=∠DCA,即可证得CD=AD=BC,问题得解.
∵AB∥CD,AD=BC,
∴∠DAB=∠B=60°,
∵AC⊥BC,
∴∠ACB=90°,
∴∠CAB=30°,
∴∠DAC=∠CAB=30°,
∵AB∥CD,
∴∠DCA=∠CAB,
∴∠DAC=∠DCA,
∴CD=AD=BC=2cm.
故答案为:2.
点评:
本题考点: 等腰梯形的性质;含30度角的直角三角形.
考点点评: 此题考查了等腰梯形的性质,以及等腰三角形的判定与性质等知识.此题难度不大,解题的关键是注意数形结合思想的应用.