求极限lim(x→0)∫(x,0)(xcost^2dx)/x
收藏:
0
点赞数:
0
评论数:
0
1个回答

说明:此题是打错了!我想应该是:求极限lim(x→0)∫(x,0)(tcost^2dt)/x.

若是这样,解法如下.

解法一:原式=lim(x→0)[xcos(x²)] (0/0型,应用罗比达法则)

=0*1

=0;

解法二:原式=lim(x→0){[1/2∫(x,0)cos(t²)d(t²)]/x}

=lim(x→0){[sin(x²)/2]/x}

=lim(x→0){[(x/2)*[sin(x²)/(x²)]}

=lim(x→0){[(x/2)*lim(x→0)[sin(x²)/(x²)]

=0*1 (应用重要极限lim(x→0)(sinx/x)=1)

=0.

点赞数:
0
评论数:
0
相关问题
关注公众号
一起学习,一起涨知识