sin 和cos的展开式是怎么得来的?
3个回答

有些符号这里打不出来,建议你参考一下高等数学.

有的《高等数学》推导太简单,但愿下面的推导你能看懂.

设sinx=a+bx+cxx+dxxx+exxxx+fxxxxx+……,求导(编号表示导数阶数):

①cosx=b+2cx+3dxx+4exxx+5fxxxx+……,

②-sinx=2c+6dx+12exx+20fxxx+……,

③-cosx=6d+24ex+60fxx+……,

④sinx=24e+120fx+……,

⑤cosx=120f+……,

……

现在分别求a,b,c,d,e,f,…….

当x=0时,sin0=-sin0=0,cos0=1,由上边的式子知

a=0,b=1,c=0,d=-1/6,e=0,f=1/(5!),……

把a,b,c,d,e,f,……代入sinx=a+bx+cxx+dxxx+exxxx+fxxxxx+……,便得展开式

sinx=x-xxx/(3!)+xxxxx/(5!)-…….

仿照sinx的展开式,cosx的展开式你自己试试吧? 期待你的成功.