求微分方程的通解 y''=e^y
5个回答

令P=y',则

y''=dP/dx=(dP/dy)·(dy/dx)= P dP/dy

P dP/dy =e^y

→P dP =e^y·dy

两边积分得

(1/2)P² =e^y +(1/2)C1²;

P² =2e^y +C1²

P=√(2e^y +C1²)

dy/dx=√(2e^y +C1²)

→dx=(1/√(2e^y +C1²) ) dy

积分得

x=∫1/√(2e^y +C1²) dy

=∫e^y/[e^y·√(2e^y +C1²)] dy

=∫1/[e^y·√(2e^y +C1²)] d e^y

令e^y=t,则

x=∫1/[t·√(2t +C1²)] d t

再令u=√(2t +C1²),则t=(u²-C1²)/2

dt=udu

则x=∫u / [u(u²-C1²)/2] d u

=2∫1 / (u²-C1²) d u

=(1/C1)·∫[1/(u-C1) - 1/(u+C1)] d u

=(1/C1)· ln|(u-C1)/(u+C1)| +C2

=(1/C1)· ln|(√(2t +C1²)-C1) / (√(2t +C1²)+C1)| +C2

=(1/C1)· ln|(√(2e^y +C1²) - C1) / (√(2e^y +C1²) + C1)| + C2

原微分方程的解是

x=(1/C1)· ln|(√(2e^y +C1²) - C1) / (√(2e^y +C1²) + C1)| + C2