在各项均为正数的数列an中,前n项与sn满足sn=1/8(an+2)²(1)求证an为等差数列
1个回答

(1)Sn=1/8(an+2)^2,S(n-1)=1/8[a(n-1)+2]^2,

an=Sn-S(n-1)=1/8[an^2+4an-a(n-1)^2-4a(n-1)]

8an=an^2+4an-a(n-1)^2-4a(n-1)

an^2-a(n-1)^2-4an-4a(n-1)=0

[an+a(n-1)][an-a(n-1)]-4[an+a(n-1)]=0

[an+a(n-1)][an-a(n-1)-4]=0

因{an}为正整数数列,即an+a(n-1)>0

所以an-a(n-1)-4=0,即an-a(n-1)=4

即{an}是等差数列

(2).a1=S1=1/8(a1+2)^2

解得a1=2

等差数列求和公式:

数列{an}中,San=na1+n(n-1)d/2=2n+2n(n-1)=2n^2

数列{bn}中,bn=1/2an-30

Sbn=1/2San-30n ,带入San=2n^2 得

Sbn=n^2-30n=(n-15)^2-225

当n=15时,数列{bn}的前n项和最小,为-225