解析:
f(x)=sinωx+cosωx=根号2*sin(ωx +π/4)
已知对任意实数x都有f(π+x)=f(π-x),则可知函数f(x)图像关于x=π/6
即当x=π/6时,函数f(x)取得最值,
则有:ω×π/6 +π/4=kπ+π/2
即ω=6k+ 3/2,k属于Z
所以:f(π/3-π/ω)
=根号2*sin[ω(π/3-π/ω) +π/4]
=根号2*sin(ωπ/3-π+π/4)
=-根号2*sin[(6k+ 3/2)*π/3+π/4]
=-根号2*sin(2kπ+ π/2+π/4)
=-根号2*sin(3π/4)
=-根号2*(根号2/2)
=-1