设函数y=3ax2-2bx+c(a,b,c都为正整数且a-b+c=0),若当x=0与x=1时,都有y>0,则a+b+c的
1个回答

解题思路:先由a-b+c=0,得出a=b-c,c=b-a,再将它们分别代入y=3ax2-2bx+c,根据x=1时,y>0,得出2c<b<2a,然后由a,b,c都为正整数,确定a,b,c的最小值,进而求出a+b+c的最小值.

∵a-b+c=0,

∴a=b-c,c=b-a,

∴y=3(b-c)x2-2bx+c,

∵x=1时,y>0,

∴3(b-c)-2b+c>0,

∴b>2c.

∵c=b-a,

∴y=3ax2-2bx+b-a,

∵x=1时,y>0,

∴3a-2b+b-a>0,

∴b<2a,

∴2c<b<2a.

∵a,b,c都是正整数,

∴c的最小值为1,b的最小值为3,a的最小值为2,

∴a+b+c的最小值为6.

故选C.

点评:

本题考点: 二次函数图象与系数的关系.

考点点评: 本题考查了二次函数图象与系数的关系,不等式的性质,有一定难度,得到2c<b<2a是解题的关键.