已知向量AB=(1+tanX,1-tanX),向量AC=(sIn(X-45度),sin(X+45度)).(1)求证向量A
1个回答

(1)向量AB·向量AC

=(1+tanx)*sin(x-45)+(1-tanx)*sin(x+45)

=(1+tanx)(sinx-cosx)/根号2+(1-tanx)(sinx+cosx)/根号2

=[(1+tanx)(sinx-cosx)+(1-tanx)(sinx+cosx)]/根号2

=[(sinx+tanxsinx-cosx-sinx)+(sinx+cosx-tanxsinx-sinx)]/根号2

=0,

所以向量AB垂直于向量AC;

(2)因为向量BC=向量AC-向量AB

=(sin(x-45)-(1+tanx),sin(x+45)-(1-tanx)),

所以|向量BC|^2

=[sin(x-45)-(1+tanx)]^2+[sin(x+45)-(1-tanx)]^2

=[sin(x-45)^2]^2+(1+tanx)^2+[sin(x+45)]^2+(1-tanx)^2

-2[sin(x-45)(1+tanx)+sin(x+45)(1-tanx)],

由(1)可得,sin(x-45)(1+tanx)+sin(x+45)(1-tanx)=0,

而[sin(x+45)^2]+[sin(x-45)]^2

=(sinx+cosx)^2/2+(sinx-cosx)^2/2

=(sinx)^2+(cosx)^2

=1,

而(1+tanx)^2+(1-tanx)^2

=2(tanx)^2+2,

所以|向量BC|^2

=2(tanx)^2+2+1

=2(tanx)^2+3,

因为x属于[-45度,45度],

所以tanx属于[-1,1],

所以(tanx)^2属于[0,1],

所以|向量BC|^2属于[3,5],

所以|向量BC|属于[根号3,根号5].

所以|向量BC|的取值范围为[根号3,根号5].