1 1 0
1 0 1
0 1 0 为A阵则逆阵求法为
写出矩阵[A|E]即
1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 -1
1 0 1 0 1 0 =0 1 0 0 0 1 =0 1 0 0 0 1 = 0 1 0 0 0 1 =0 1 0 0 0 1
0 1 0 0 0 1 1 0 1 0 1 0 0 -1 1 -1 1 0 0 0 1 -1 1 1 0 0 1 -1 1 1
故逆阵为 1 0 -1
0 0 1
-1 1 1
思路:AX=E 则 X=A^-1 即求AX=E的解向量X
0 1 0 0 0 1
请采纳答案,支持我一下.