求值:(1+cos20°)/(2sin20°)-sin10°(tan^-1 5°-tan5°)(解题过程)
2个回答

sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)

sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)

cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)

cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)

sinαsinβ=-1/2[cos(α+β)-cos(α-β)]

cosαcosβ= 1/2[cos(α+β)+cos(α-β)]

sinαcosβ= 1/2[sin(α+β)+sin(α-β)]

cosαsinβ= 1/2[sin(α+β)-sin(α-β)]

((1+cos20°)/2sin20°)-sin10°(cot5°-tan5°) =[(1+cos20°)/4sin10°cos10°]-sin10°(cot5°-tan5°)

= [(1+cos²10°-sin²10)/4sin10°cos10°]-sin10°(cot5°-tan5°)

=2cos²10°/4sin10°cos10°-sin10°(cot5°-tan5°)

=(2cos10°/4sin10°)-2sin5°cos5°(cot5°-tan5°)

=(cos10°/2sin10°)-2(cosp²5°-sin²5°)

=(cos10°/2sin10°)-2cos10°

=(cos10°-4sin10°cos10°)/2sin10°

=(sin80°-2sin20°)/2sin10°

=[(sin80°-sin20°)-sin20°]/2sin10°

=(2cos50°sin30°-sin20°)/2sin10°

=(sin40°-sin20°)/2sin10°

=2cos30°sin10°/2sin10°

=cos30°

=√3/2