y=(1-2sinx)/( 1+3sinx)的值域
1个回答

因为,对于sinx,其周期是2π,下面仅在x∈[0,2π]内考虑问题.

y=(1-2sinx)/(1+3sinx)

显然:sinx≠-1/3,即:x≠arcsin(-1/3)

y'=[-2cosx(1+3sinx)-3cosx(1-2sinx)]/(1+3sinx)²

y'=(-2cosx-6sinxcosx-3cosx+6sinxcosx)/(1+3sinx)²

y'=-5cosx/(1+3sinx)²

1、令:y'>0,即:-5cosx/(1+3sinx)²>0

有:5cosx<0

解得:cosx<0

即:x∈(π/2,arcsin(-1/3))∪(arcsin(-1/3),3π/2)时,y为单调增函数.

2、令:y'<0,即:-5cosx/(1+3sinx)²<0

有:5cosx>0

即:x∈[0,π/2)∪(3π/2,arcsin(-1/3))∪(arcsin(-1/3),2π]时,y为单调减函数.

综合以上,有:

①x=π/2时:y有极小值,y极小=[1-2sin(π/2)]/[1+3sin(π/2)]=-1/4

②x=3π/2时:y有极大值,y极大=[1-2sin(3π/2)]/[1+3sin(3π/2)]=-3/2

③x=arcsin(-1/3)时:y=[1-2sin(arcsin(-1/3)]/[1+3sin(arcsin(-1/3)]=∞

④x=0时:y=(1-2sin0)/(1+3sin0)=1

因此,所求值域为:y∈[-3/2,∞)