这个式子怎么求最小值?48m-160/4*m的平方+1
1个回答

当m=10/3时,f(m)=(48m-160)/(4m^2+1)=0;

当m≠10/3时

f(m)=(48m-160)/(4m^2+1)

=16(3m-10)/(4m^2+1)

=48(m-10/3)/[4(m-10/3+10/3)^2+1]

=48(m-10/3)/[4(m-10/3)^2+80/3*(m-10/3)+400/9+1]

=48(m-10/3)/[4(m-10/3)^2+80/3*(m-10/3)+409/9]

=48/[4(m-10/3)+80/3+(409/9)/(m-10/3)]

令t=m-10/3,则

当m=10/3时,f(m)=g(t)=0;

当m≠10/3时,f(m)=g(t)=48/[4t+80/3+(409/9)/t]

求f(m)的最小值即为求g(t)的最小值.

当m>10/3时,t=m-10/3>0

f(m)=g(t)=48/[4t+80/3+(409/9)/t]

=48/{[2√t-(√409/3)/√t]^2+2*2*√409/3+80/3}

如果2√t-(√409/3)/√t>0,也即t>√409/6,则g(t)随t的增大而减小,则当t>√409/6时其极小值为

lim t->+∞ g(t)=0;

如果2√t-(√409/3)/√t≤0,也即0