求SINπ/64 COSπ/64 COSπ/32 COSπ/16 COSπ/8!急救急救
收藏:
0
点赞数:
0
评论数:
0
2个回答

cosπ/8=cos[(π/4)/2]

=√[1+cos(π/4)]/2

=√[1+(√2/2)]/2

=(1/2)√(2+√2)

cos(π/16)=cos[(π/6)/2]

=√[1+cos(π/8)]/2

=√{1+√[(2+√2)/4]}/2

=√{[4+√(2+√2)]/8}

cos(π/32)=cos[(π/16)/2]

=√[1+cos(π/16)]/2

=√{1+√[4+√(2+√2)]/8}/2

=(1/4)√{16+√[4+√(2+√2)}

sin(π/64)=sin[(π/32)/2]

=√[1-cos(π/32)]/2

=√{1-(1/4)√{16+√[4+√(2+√2)}}/2

=√{4-{16+√[4+√(2+√2)}}/8

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识