已知函数f(x)=sin(2ωx+π6)(ω>0)直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x
1个回答

(1)∵函数f(x)=sin(2ωx+[π/6])(ω>0),直线x=x1、x=x2是y=f(x)图象的两条对称轴,

且|x1-x2|的最小值为[π/2],

∴函数的最小正周期T=2×[π/2]=[2π/2ω],解之得ω=1,故f(x)=sin(2x+[π/6]).

令2kπ-[π/2]≤2x+[π/6]≤2kπ+[π/2],k∈z,求得kπ-[π/3]≤x≤kπ+[π/6],

故函数的增区间为[kπ-[π/3],kπ+[π/6]],k∈z.

(2)∵f(α)=sin(2α+[π/6])=[1/3],α∈[-[π/3],[π/6]],∴2α+[π/6]∈[-[π/2],[π/2]],

∴cos(2α+[π/6])=

2

2

3,

求f(α+[π/6])=sin(2α+[π/2])=cos2α=cos[(2α+[π/6])-[π/6]]=cos(2α+[π/6])cos[π/6]+sin(2α+[π/6])sin[π/6]

=

2

3

3

2+[1/2×

1

3]=

2

6+1

6.

(3)关于x的方程f(x+[π/6])+mcosx+3=0,即 cos2x+mcosx+3=0,

即2cos2x+mcosx+2=0,在x∈(0,[π/2])有实数解.

令cosx=t∈(0,1),则2t2+mt+2=0在(0,1)上有解.

令g(t)=2t2+mt+2,∵△=m2-16≥0,∴m≥4,或m≤-4.

由于对称轴为t=-[m/4]≥1,或 t=-[m/4]≤-1,

∵g(0)=2>0,∴由图象可得 g(1)=m+4<0,解得m<-4.