解题思路:根据角平分线的定义可得∠OBC=[1/2]∠ABC,∠OCB=[1/2]∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理即可得证.
证明:∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB),在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A...
点评:
本题考点: 三角形内角和定理.
考点点评: 本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.