利用因式分解解题(1).若a^2+a+1=0,那么a^2009+a^2008+a ^2007= (直接写出答案,能讲下当
1个回答

a^2009+a^2008+a ^2007= a^2007(a^2 + a + 1) = 0

a+b+1的绝对值》0,a^2 b^2+4ab+4 = (ab+2)^2》0,二者和为0,故各自为0,

ab = -2

a+b = -1

解得a = 1,b=-2

或a=-2,b=1

25^7-5^12 = 5^14 - 5^12 = 5^12(5^2 - 1) = 5^12·24 = 5^11·120

故25^7-5^12能被120整除

2a^2+5ab+3b^2= 2a^2+3ab+2ab+3b^2=a(2a+3b) + b(2a+3b) = (a+b)(2a+3b)

b-c = (a-c)-(a-b) = -3/2

(b-c)^2+3(b-c)+9分之4 = [(b-c) + (3/2)]^2 +4/9 - 9/4= -65/36