椭圆x^2/25+y^2/16=1的左右顶点为A1,A2,平行于y轴的直线交与椭圆M,N,
1个回答

令点P的坐标为(x,y).

∵M、N都在给定的椭圆上,且MN∥y轴,

∴可设M、N的坐标分别为(5cosu,4sinu)、(5cosu,-4sinu).

显然,点A1、A2的坐标分别为(-5,0)、(5,0),

∴y/(x+5)=4sinu/(5cosu+5)、y/(x-5)=-4sinu/(5cosu-5),

∴5ycosu+5y=4xsinu+20sinu、5ycosu-5y=-4xsinu+20sinu,

上述两式分别相加、相减,得:10ycosu=40sinu、10y=8xsinu,

∴y^2(cosu)^2=16(sinu)^2、25y^2=16x^2(sinu)^2,

∴y^2-y^2(sinu)^2=16(sinu)^2、(sinu)^2=25y^2/(16x^2),联立,消去sinu,得:

y^2-y^2[25y^2/(16x^2)]=16[25y^2/(16x^2)],

∴1-25y^2/(16x^2)=16[25/(16x^2)],

∴16x^2-25y^2=16×25,∴x^2/25-y^2/16=1.

∴点P的轨迹方程是双曲线:x^2/25-y^2/16=1.