我现在暂时没分了,请各位大大见谅.
1个回答

分析:

(1)利用三角形全等得出,∠PBC=∠PDC,由PB=PE,∴PE=PD.要证PE⊥PD;从三方面分析,当点E在线段BC上(E与B、C不重合)时,当点E与点C重合时,点P恰好在AC中点处,当点E在BC的延长线上时.

(2)作出三角形的高,用未知数表示出即可.

①∵四边形ABCD是正方形,AC为对角线,

∴BC=DC,∠BCP=∠DCP=45°.

∵PC=PC,

∴△PBC≌△PDC(SAS).

∴PB=PD,∠PBC=∠PDC.

又∵PB=PE,

∴PE=PD.

②(i)当点E在线段BC上(E与B、C不重合)时,

∵PB=PE,

∴∠PBE=∠PEB,

∴∠PEB=∠PDC,

而∠PEB+∠PEC=180°,

∴∠PDC+∠PEC=180°,

∴∠DPE=360°-(∠BCD+∠PDC+∠PEC)=90°,

∴PE⊥PD.

(ii)当点E与点C重合时,点P恰好在AC中点处,此时,PE⊥PD.

(iii)当点E在BC的延长线上时,如图.

∵∠PEC=∠PDC,∠1=∠2,

∴∠DPE=∠DCE=90°,

∴PE⊥PD.

综合(i)(ii)(iii),PE⊥PD;