在半径为1的圆O中,弦AB,AC的长分别为根号3和根号2,求AB`AC和BC弧围成的图形面积
1个回答

要分二种情况,弦AB和AC是圆心的同侧和异侧.

1、异侧,

从A作直径AD,连结BD,CD,根据半圆上圆周角是直角性质,

△ABD和△ACD都是RT△,

AD==2,AB=√2,BD=√2,

CD=√(2^2-3)=1,

〈CAB=75°,

S作OE⊥AB,OE=1/2R=1/2,AE=√3/2,

S△AOB=√3/4,

S扇形AOB=π*120/360=π/3,

S弓形AB=π/3-√3/4,

S△AOC=1/2,

S扇形AOC=π/4,

S弓形AC=π/4-1/2

S△ABC+BD弓形=π-(π/3-√3/4)-(π/4-1/2)

=5π/12+√3/4+1/2.

第二种情况在同侧,

S△ABC=AC*ABsin15°/2=√3*√2*(√6-√2)/4

=(3-√3)/2.

S△BOE=1*1*sin30°/2=1/4,

S扇形BE=π*30/360=π/12,

S弓形BE=π/12-1/4,

S△AOE=1/2,

S扇形AE=π/4,

S弓形AE=π/4-1/2,

S△ABC+BD弓形=圆面积-弓形BE-弓形AE=π-(π/12-1/4)-(π/4-1/2)

=2π+3/4.