根据定义,F'(1)
= lim(dx→0)[ f[(1+dx)^2-1]+f[1-(1+dx)^2]-2f(0)]/dx
(1+dx)^2 = (-1-dx)^2,所以
= lim(dx→0)[ f[(-1-dx)^2-1]+f[1-(-1-dx)^2]-2f(0)]/dx
令t=-dx,上式可转化为
= lim(-t→0) [f(-1+t)^2 -1] + f[1-(-1+t)^2]-2f(0)]/(-t)
= - lim(t→0) [f(-1+t)^2 -1] + f[1-(-1+t)^2]-2f(0)]/t
根据定义,= - F'(-1)
楼主上面那个解法的最后一步,其实就是倒数的定义.
因为F'(1)根据倒数的定义
= lim(x→0) [F(1+x) - F(1)]/x
= lim(x→0)[f[(1+x)^2-1]+f[1-(1+x)^2]-2f(0)]/x