已知等差数列an的前n项和为Sn,且对于任意的正整数n满足2根号下Sn=(an)+1
2个回答

1.

2√Sn=an+1

4Sn=(an)^2+2an+1

4S1=(a1)^2+2a1+1=4a1,

a1=1

4S(n-1)=[a(n-1)]^2+2a(n-1)+1

4an=4[sn-s(n-1)]=(an)^2+2an-[a(n-1)]^2-2a(n-1)

(an)^2-2an-[a(n-1)]^2-2a(n-1)=0

[an+a(n-1)][an-a(n-1)]-2[an+a(n-1)]=0

[an+a(n-1)][an-a(n-1)-2]=0

an+a(n-1)=0或an-a(n-1)-2=0

an=a1(-1)^(n-1)=(-1)^(n-1)

或an=a1+2(n-1)=2n-1

经检验都符合题意

所以

an=(-1)^(n-1)或an=2n-1.

2.

bn=1/[ana(n+1)]

2-1,当an=(-1)^(n-1)时,

bn=1/[ana(n+1)]

=1/{[(-1)^(n-1)][(-1)^n]}

=1/[(-1)^(2n-1)]

=-1

Bn=-1*n=-n;

2-2,当an=2n-1时,

bn=1/[ana(n+1)]

=1/[(2n-1)(2n+1)]

=(1/2)[1/(2n-1)-1/(2n+1)]

2bn=1/(2n-1)-1/(2n+1)

2b(n-1)=1/(2n-3)-1/(2n-1)

2b(n-2)=1/(2n-5)-1/(2n-3)

2b(n-3)=1/(2n-7)-1/(2n-5)

……

2b3=1/5-1/7

2b2=1/3-1/5

2b1=1/1-1/3

两边相加:

2Bn=2[b1+b2+b3+……+b(n-3)+b(n-2)+b(n-1)+bn]

=1-1/(2n+1)

=2n/(2n+1)

Bn=n/(2n+1).

综上所述

an=(-1)^(n-1)时,Bn=-n

an=2n-1时,Bn=n/(2n+1).