求函数y=(x-1)e^arctanx 的单调区间及极值
1个回答

∵y=(x-1)e^arctanx

∴y′=(x-1)′e^arctanx+(x-1)[e^arctanx]′

=e^arctanx+(x-1)e^arctanx• [arctanx]′

=e^arctanx+(x-1)e^arctanx• [1/(1+x^2)]

=e^arctanx(1+(x-1)/(1+x^2))

令y′=0

∵e^arctanx>0即求1+(x-1)/(1+x^2)=(1+x^2+x-1)/(1+x^2)=(x^2+x)/(1+x^2)=0

得驻点x1=-1.x2=0

当x〈-1.x>0时,y′>0.函数y单调递增

当-1<x<0时,y′<0.函数y单调递减

∴∶x=-1时,y取得极大值-2e^(arctan(-1))=-2e^(-∏/4)

x=0时,y取得极小值-e^(0)=-1

综上.函数y=(x-1)e^arctanx 的单调增区间为x∈[-∞,-1]∪[0,+∞]

函数y=(x-1)e^arctanx 的单调减区间为x∈[-1,0]

y的极大值为-2e^(-∏/4)

y的极小值为-1