在一次国际会议上,k个科学家共使用p种不同语言.若任何两个科学家都至少使用一种共同的语言,但没有任何两个科学家使用的语言
1个回答

将P种不同的语言记为M={M1,M2,M3,...MP} 则M的子集有2^P个 每个科学家所掌握的语言是M的一个子集 因为没有任何两位科学家使用的语言完全相同 所以子集两两不等 又由于任何两个科学家都至少使用一种共同的语言 则任何两个子集都不是互补子集 所以这K个语言子集不能超过M的子集数2^P的一半 即k大于或等于2^p-1 他们有共同的语言.故最多允许1个人掌握一种语言.2种语言的人:因为1种必须和第一个人相同,故留下1种语言的选择空间,即最多有p-1个人.3种语言的人:因为1种必须和第一个人相同,故只能任意选择2个语言,最多可以有人(p-1)(p-2).4种语言的人:因为1种必须和第一个人相同,故只能任意选择3个语言,最多可以有人(p-1)(p-2)(p-3) …… 掌握p-1种语言的人:因为1种必须和第一个人相同,但他们只能有一种语言不会学,而且不能是第一个人所掌握的语言,故最多只允许有p-1个人 掌握p种语言的人:最多只有1个人.故人数k必须小于等于最多允许的以上的人数 1 p-1 (p-1)(p-2) (p-1)(p-2)(p-3) 当p为偶数时,最中间的两个项为(p-1)(p-2)(p-3)…(p-1/2*p)= (p-1)(p-2)(p-3)…1/2*p 当p为奇数时,最中间的项为(p-1)(p-2)(p-3)…(p-1/2*p)= (p-1)(p-2)(p-3)…1/2*(p+1) (p-1)(p-2)(p-3) (p-1)(p-2) p-1 1 估计这几项相加就是2^(p-1)吧!所以k≤2^(p-1)