已知点P(2,0),及⊙C:x2+y2-6x+4y+4=0.
1个回答

解题思路:(1)设出直线方程,根据点到直线的距离公式即可求出直线l1的方程;

(2)联立直线和圆的方程,利用根与系数之间的关系,求出圆心坐标以及圆的半径即可求出圆的方程.

(1)∵⊙C:x2+y2-6x+4y+4=0,

∴圆的标准方程为(x-3)2+(y+2)2=9,

即圆心C(3,-2),半径r=3.

当直线l1的斜率不存在是时,直线l1的方程为x=2,此时过点P且与⊙C的圆心的距离d=1,满足条件.此时直线l1的方程为x=2.

当直线l1的斜率存在时,设斜率为k,

则此时直线方程为y-0=k(x-2),

即kx-y-2k=0,

则圆心C到直线kx--y-2k=0的距离d=

|3k+2−2k|

1+k2=

|k+2|

1+k2=1,

解得k=-[3/4],此时直线方程为y=-[3/4](x-2),

∴直线l1的方程为y=-[3/4](x-2)或x=2.

(2)由x+y-2=0得y=2-x代入(x-3)2+(y+2)2=9,

得x2-7x+8=0,

设A(x1,y1),B(x2,y2),

则x1+x2=7,x1x2=8,

x1+x2

2=

7

2,即AB的中点的横坐标为[7/2],纵坐标为y=2−

7

2=−

3

2.

|AB|=

(x1−x2)2+(y1−y2)2=

(x1−x2)2+(x1−x

点评:

本题考点: 直线与圆的位置关系.

考点点评: 本题主要考查直线与圆的位置关系,求直线的方程,求圆的方程,利用直线和圆的位置关系求出圆的半径和圆心是解决本题的关键.考查学生的计算能力.