计算:39×[148/149]+148×[86/149]+48×[74/149]=______.
1个回答

解题思路:此题数字很有特点:分数的分母相同,第一项中的分子与第二项中的整数部分相同.于是把第二项变为86×[148/149],然后运用乘法分配律的逆运算简算,得出125×[148/149]+48×[74/149],再把125×[148/149]转化为250×[74/149],再次运用乘法分配律的逆运算简算,得出结果.

39×[148/149]+148×[86/149]+48×[74/149],

=39×[148/149]+86×[148/149]+48×[74/149],

=(39+86)×[148/149]+48×[74/149]

=125×[148/149]+48×[74/149],

=250×[74/149]+48×[74/149]

=(250+48)×[148/149],

=298×[74/149],

=148.

点评:

本题考点: 分数的巧算.

考点点评: 此题主要运用了转化的思想,以及乘法分配律进行简算.