方法一:
令t = 1/x,dt = -1/x² dx => dx = (-x²)dt
∫dx/[x²*(e^(1/x) - 1)]
= ∫-(x²)/[x²*(e^t - 1)] dt
= ∫ -1/(e^t - 1) dt
= ∫( e^t - 1 - e^t)/(e^t - 1) dt
= ∫ dt - ∫ e^t/(e^t - 1) dt
= t - ∫ d(e^t - 1)/(e^t - 1)
= 1/x - ln|e^t - 1| + C
= 1/x - ln|e^(1/x) - 1| + C
方法二:
令e^(1/x) - 1 = u
x = 1/ln(u + 1),dx = [-1/(u + 1)]/ln²(u + 1) du
x² = 1/ln²(u + 1),1/x² = ln²(u + 1)
原式 = ∫ ln²(u + 1) * 1/u * -1/(u + 1)/ln²(u + 1) du
= -∫ 1/[u(u + 1)] du
= -∫ (1 + u - u)/[u(u + 1)] du
= -∫ 1/u du + ∫ 1/(u + 1) du
= -ln|u| + ln|u + 1| + C
= ln|e^(1/x) - 1 + 1| - ln|e^(1/x) - 1| + C
= 1/x - ln|e^(1/x) - 1| + C