x^2+y^2=4x化为标准型为:(x-2)²+y²=4,
则参数方程为:x=2+2cost,y=2sint,t:-π-->π,ds=√[(x')²+(y')²]dt=2dt
则:∫(x²+y²)^(1/2)ds
=∫[-π-->π](4+8cost+4cos²t+4sin²t)^(1/2)*2dt
=∫[-π-->π](8+8cost)^(1/2)*2dt
=4∫[0-->π](8+8cost)^(1/2)dt
=4∫[0-->π](16cos²(t/2))^(1/2)dt
=16∫[0-->π](cos²(t/2))^(1/2)dt
=16∫[0-->π]cos(t/2)dt
=32sin(t/2) [0-->π]
=32