第一项,分母是(x+2)?还是x(x+2)?
第二项,分母是(x+4)?还是(x+2)(x+4)?
第三项……
应该是后者吧?
如果是的话:
解1:
1/[x(x+2)]+1/[(x+2)(x+4)]+1/[(x+4)(x+6)]
=(x+4)(x+6)/[x(x+2)(x+4)(x+6)]+x(x+6)/[x(x+2)(x+4)(x+6)]+x(x+2)/[x(x+2)(x+4)(x+6)]
=[(x+4)(x+6)+x(x+6)+x(x+2)]/[x(x+2)(x+4)(x+6)]
=(x^2+10x+24+x^2+6x+x^2+2x)/[x(x+2)(x+4)(x+6)]
=3(x^2+6x+8)/[x(x+2)(x+4)(x+6)]
=3(x+2)(x+4)/[x(x+2)(x+4)(x+6)]
=3/[x(x+6)]
解2:
1/[x(x+2)]+1/[(x+2)(x+4)]+1/[(x+4)(x+6)]
=(1/2)[1/x-1/(x+2)]+(1/2)[1/(x+2)-1/(x+4)]+(1/2)[1/(x+4)-1/(x+6)]
=(1/2)[1/x-1/(x+6)]
=(1/2)[(x+6)-x]/[x(x+6)]
=3/[x(x+6)]